A Novel Series of Nitrosamino-tetrazoles

By J. C. Tobin, R. N. Butler, and F. L. Scott* (Chemistry Department, University College, Cork, Ireland)

Summary A new series of nitrosamino-tetrazoles, with a possible primary nitrosamino-structure, has been isolated as stable compounds.

The reaction of primary arylamines (and heterocyclic amines) with nitrous acid, which leads to diazonium salts

R = NO) from the nitrosation of 5-amino-1-benzyl-, -1-phenyl-, and -2-benzyltetrazole respectively (see Table).

In a typical run 350 mm. of sodium nitrite in aqueous solution (3.5m) was added with stirring to a suspension of compound (I; $R^1 = CH_2Ph$, $R^2 = H$) (170 mm.) in 500 ml.

Nitrosamines				Hydrazones	Hydrazones		
Compound		Yield %	M.p.	Compound	Yield %	M.p.	
$(I; R^1 = CH_0Ph, R^2 = NO)$		84	56°	(I; $R^1 = CH_2Ph$, $R^2 = N = CHPh$	75	208°	
$(I; R^1 = Ph, R^2 = NO)$		51	110°	$(I; R^1 = Ph, R^2 = N = CHPh) \dots$	89	212°	
$(II; R = NO) \dots \dots$		ca. 50	a	(I1: $R = N = CHPh$)	32 b	145°	

a Isolated as a viscous oil which decomposed on heating. For the nitrosation reaction in this case, the quantity of hydrochloric acid was 1/5 of that described above and the sodium nitrite 1/2.
b Overall yield from amine.

is normally regarded as proceeding through a nitrosamine stage. No such nitrosamines have been isolated, though in the case of 5-amino-1-methyltetrazole (I; $R^1 = Me$, $R^2 = H$), reaction with nitrous acid has been suggested^{1,2} to lead to such a compound, (I; $R^1 = Me$, $R^2 = NO$). This reaction could not be repeated by us, or by others.³ We now report the first isolation of a number of nitrosamines, compounds (I; $R^1 = CH_2Ph$ and Ph, $R^2 = NO$) and (II;

of concentrated hydrochloric acid diluted with an approximately equal volume of crushed ice. The mixture was stirred for 2 hr. and the solid removed and stirred with cold ether (150 ml.). Evaporation of the ethereal solution, after drying, yielded compound (I; $R^1 = CH_2Ph$, $R^2 = NO$).

Reduction of the nitrosamines to the corresponding hydrazines which were characterised as benzaldehyde derivatives (I; $R^1 = CH_2Ph$ or Ph, $R^2 = N = CHPh$) and

(II; R = N=CHPh), was effected when the materials (I; $R^1 = CH_2Ph$ or Ph, $R^2 = NO$) and (II; R = NO) were treated with zinc dust in acetic acid. The isomeric hydrazones (I; $R^1 = CH_2Ph$, $R^2 = N = CHPh$) and (II; R =N=CHPh) were also prepared by direct benzylation of the parent unsubstituted hydrazone. These two compounds were distinguished by the unequivocal preparation of one, i.e. compound (I; $R^1 = CH_2Ph$, $R^2 = N = CHPh$) by treating benzylidene-4-benzylthiosemicarbazone with litharge and sodium azide, a reaction of a type we have previously described.4

The ¹H n.m.r. spectra of the materials (I; $R^1 = CH_2Ph$, $R_2 = NO$) and (II; R = NO) (measured on a Varian H-A 100 spectrometer at 25° with deuteriochloroform as solvent) were consistent with their nitrosamine character. N.m.r. studies of isomerism due to restricted rotation about the N-N bond are well documented, and it has been established that protons cis to the O atom resonate at higher fields than trans. The spectra of the materials (I; $R^1 = CH_2Ph$, $R^2 = NO$) and (II; R = NO), each showed two signals for the benzyl protons, as expected: (I; $R^1 = CH_2Ph$, $R^2 =$ NO), τ cis, 4.56, trans, 4.36, isomer ratio cis: trans, ca 1:7; (II; R = NO), cis, 4.42, trans, 4.26, isomer ratio, ca. 1:1.5. The small separation of the cis and trans signals relative to that of N-alkyl-nitrosamines ($\Delta \tau \ ca. \ 0.8$) is probably due to the greater distance of the alkyl groups from the nitrosamine unit in this instance. The model compound (III), prepared by nitrosation of 5-benzylaminotetrazole, also showed two benzyl signals, τ 4.70 and 3.94 ($\Delta \tau$ 0.76) in good agreement with other work.5

The materials (I; $R^1 = Me$, CH_2Ph , and Ph, $R^2 = NO$) and (II; R = NO) may exist in the amino-tetrazole form shown or in a tautomeric imino-tetrazoline form (IV) which may be stabilised by intramolecular hydrogen bonding of the nitrosamine oxygen atom. Such tautomerism has been established for a number of substituted 5-aminotetrazoles.6

(Received, December 4th, 1969; Com. 1844.)

- ¹ F. R. Benson, "Heterocyclic Compounds," ed. R. C. Elderfield, Wiley, London, 1967, vol. 8, p. 1.
- ² R. Stolle, Ber., 1932, 134 (2), 282. ³ K. Hattori, E. Lieber, and J. P. Horwitz, J. Amer. Chem. Soc., 1956, 78, 411.
- ⁴ R. N. Butler and F. L. Scott, J. Org. Chem., 1966, 31, 3182.
- ⁵ R. K. Harris and R. A. Spragg, Chem. Comm., 1967, 362; A. Mannschreck, H. Munsch, and A. Mattheus, Angew. Chem. Internat. Edn., 1966, 5, 728; G. J. Karabatsos and R. A. Taller, J. Amer. Chem. Soc., 1964, 86, 4373.
 - ⁶ R. A. Henry, W. G. Finnegan, and E. Lieber, J. Amer. Chem. Soc., 1954, 76, 2894; R. N. Butler, J. Chem. Soc. (B), 1969, 680.